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Abstract – In this letter, we fist consider the Picard’s successive approximation method for solving a class of the
Volterra integral equations in local fractional integral operator sense. Special attention is devoted to the Picard’s
successive approximate methodology for handling local fractional Volterra integral equations. An illustrative paradigm
is shown the accuracy and reliable results.
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1. Introduction

The theory of local fractional calculus is one of useful
tools to process the fractal and continuously non-
differentiable functions [1-8]. It was successfully applied
in local fractional Fokker–Planck equation [1], the fractal
heat conduction equation [2, 8], fractal-time dynamical
systems [4], fractal elasticity [5], local fractional
diffusion equation [8], local fractional Laplace equation
[7, 9], local fractional integral equations [10, 11, 12],
local fractional differential equations [7-13, 14, 15],
fractal wave equation [7, 9, 16].

In this letter, by using the Picard’s successive
approximation method, we consider analysis solution to
the non-homogeneous local fractional Volterra integral
equation of the second kind [10, 13]. This paper is
organized as follows: In section 2, we investigate local
fractional integrals and its fractal geometrical
explanation. In section 3, the Picard’s successive
approximation method is proposed based on local
fractional integrals. An illustrative example is shown in
section 4. Conclusions are in Section 5.

2. Local Fractal Integrals and Fractal
Geometrical Explanation

2.1. Local fractional continuity of functions

Definition 1 If there is the relation [6, 7, 10-13]

   0f x f x   (2.1)

with 0x x   , for , 0   and , R   .

Now  f x is called local fractional continuous

at 0x x , denoted

by    
0

0lim
x x

f x f x


 .Then  f x is called local

fractional continuous on the interval  ,a b , denoted by

[6, 7, 10-13]

   ,f x C a b . (2.2)

Definition 2 A function  f x is called a non-

differentiable function of exponent , 0 1  , which
satisfy Hölder function of exponent  , then
for ,x y X such that [6, 7, 10-13]

   f x f y C x y   
. (2.3)

Definition 3 A function  f x is called to be continuous

of order , 0 1  , or shortly continuous, when we
have the following relation[6, 7, 10-13]

      0 0f x f x o x x    . (2.4)

2.2. Local fractional integrals

Definition 4 Setting    ,f x C a b , local fractional

integral of  f x of order  in the interval  ,a b is

defined [6, 7, 10-16]
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(2.5)

where 1j j jt t t   ,  1 2max , , ,...jt t t t     and

1,j jt t   
, 0,..., 1j N  , 0t a , Nt b , is a partition

of the interval  ,a b . For any  ,x a b , there exists

[12, 13]
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   a xI f x
, (2.6)

denoted by

     ,xf x I a b . (2.7)

Here, the following results are valid:

(1) If      , ,xf x I a b one deduce to [12, 13]

   ,f x C a b . (2.8)

(2) If a b , then we have [12, 13]
    0a aI f x  . (2.9)

(3) If a b , then we have [12, 13]
       a b b aI f x I f x  . (2.10)

(4) If there is the fractal dimension 0  , then we have
[12, 13]

     0
a aI f x f x

.
(2.11)

(5) For any    ,f x C a b , 0 1  , we have

local fractional multiple integrals, which is written
as[12]

         
0 0 0

...

k times

k
x x x x x xI f x I I f x  


.

(2.12)

(6) If      , , ,x y C a b C c d    , then [12]

           , ,a b c d c d a bI I x y I I x y     . (2.13

)
(7) The sine sub-function can be written as [6, 7]
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)

2.3. Fractal geometrical explanation

Definition 5 Let a be an arbitrary but fixed real number.

The integral staircase function  FS x of order αfor a set

F is given by [4, 11, 12]
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(2.15)

Then we have the following results:

(8) The fractal mass function  , ,F a b can be written

as [11, 12]
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)
(9) We have [11, 12]
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y x
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. (2.17

)
(10) If a b c  , we have [4]

     , , , , , ,F a b F b c F a c      . (2.18

)
Remark 1 From formula (2.16) we can write [11,12]

   
 

, ,
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b a
F a b








 

. (2.19)

Remark 2 From formula (2.17) we deduce

to      b a c b c a       . Hence, we can

understand it by fractal geometry [12]:

        H F b a H F c b H F c a          .

(2.20)

3. Picard’s Successive Approximation
Method

In this method, we set

   0u x f x . (3.1)

We give the first approximation  1u x by

          1 0
,

1

x
u x f x K x t f t dt





 

   .

(3.2)

Here, we find that  1u x is local fractional continuous

if  f x ,  ,K x t , and  0u x are local fractional

continuous.

The second approximation  2u x can be obtained

similarly by replacing  0u x by  1u x obtained above.

And we find that

          2 10
,

1

x
u x f x K x t u x dt





 

   .

(3.3)
Continuing in this manner, we have an infinite sequence
of functions

       0 1 2, , , , ,nu x u x u x u x  (3.4)

which satisfies the recurrence equations

          10
,

1

x

n nu x f x K x t u x dt



  

  

,
(3.5)

for 1, 2,3,n   and  0u x is equivalent to any

selected function, which is local fractional continuous.
Hence, we have successive approximation as follows:
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u x f x K x t f t dt
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(3.6)

          2 10
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(3.7)
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           3 20
,

1

x
u x f x K x t u x dt
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(3.8)
… …
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(3.9)
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   .

(3.10)

Thus, at the limit, the solution  u x is written as

   lim nn
u x u x


 . (3.11)

4. An Illustrative Paradigm

Solve the following linear Volterra integral equation
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(4.1)

Let us set    0 1
x
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, then the first

approximation can be written as
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(4.2)
The second approximation can be calculated in the
similar way, which is
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(4.3)
Proceeding in this way, we can obtain that
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(4.4)

The final solution is
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(4.5)

5 Conclusions

We investigated the local fractional integrals and its
fractal geometrical explanation. Based on the local
fractional integral operator, we derive the Picard’s
successive approximation method for solving a class of
local fractional integral equation. Special attention is put
on the approximation methodology for handling local
fractional integral equations in a way for accessible to
applied scientists and engineers. We give an illustrative
paradigm to elaborate the accuracy and reliable results.
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